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The electromagnetic fields in a semi-infinite free-electron-model metal (plasma) excited by
an incident p-polarized electromagnetic (EM) wave are calculated by the Reuter and Sond-
heimer method. It is shown that both a transverse and a longitudinal wave are excited and
that they have the usual plane-wave exponential forms at distances greater than a fraction of
the electron mean free path from the surface. The dispersion relations for these waves are
calculated, and they are found to be independent of whether the electron surface scattering is
diffuse or specular. The dispersion relation of the transverse wave is found to be identical
to that of an EM wave in an unbounded plasma, while within the approximations made, the
dispersion relation of the longitudinal wave is found to be that of the plasma density wave

(plasmon).
1. INTRODUCTION

The Fresnel theory of optically excited polariza-
tion waves, presented in the preceding article,*
was based on the assumption that the wave fields
in the conducting material can be written as a

were derived for unbounded plasmas and their use
in the Fresnel equations tacitly assumed that the
presence of a boundary surface does not alter them
or the plane-wave character of the waves. In this
article these assumptions will be studied by con-
sidering the exact problem of an EM wave pene-

superposition of plane harmonic waves, correspond- trating into a semi-infinite homogeneous plasma.

ing to an electromagnetic (EM) wave (divergence-
free field) and a polarization wave (irrotational
field), with known dispersion relations k(w). This
theory was then applied to the problem of optically
exciting plasma density waves (plasmons) in a
free-electron model of metals with plane bound-
aries, using the dispersion relations

(C/CO)ZET“ET:GT(ET,CD) (1- 1)
for the EM wave, and
GL(EL,O))':O (la 2)
for the plasma wave, where
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In the above equations, w and K are the frequency
and wave vector of the wave vy is the collision fre~
quency, w, the plasma frequency, and vy the
Fermi velocity., While these dispersion relations
are valid even for inhomogeneous waves, ! they

oo

Suppose a plane polarized EM wave in vacuum is
obliquely incident on a semi-infinite metal, de-
scribed by a free-electron gas in a uniform posi-
tive background with some kind of reflective scat-
tering at the surface. This problem was rather
thoroughly studied by Reuter and Sondheimer? and
Dingle® for normal incidence in the theory of the
anomalous skin effect in metals, Although Reuter
and Sondheimer? discussed oblique incidence, their
conclusions are applicable only to s-polarized
waves (E field normal to plane of incidence), since
they assumed that V. E=0 inside the metal. The
correct treatment of the p-polarized case was
given recently by Forstmann,* and Kliewer and
Fuchs,® who explicitly permitted cp.arge fluctua-
tions in the metal (plasma), i.e., V-E=4mp,

Kliewer and Fuchs® used the surface-impedance
approach and did not explicitly consider the effect
of the boundary surface on the wave fields or the
dispersion relations. Also, the boundary condi-
tions that they used on ﬁ, namely, that the tan-
gential component is symmetric and the normal
component antisymmetric, appear to be macro-
scopic conditions, Thus, their article does not
shed light on the problem of interest here.®

The approach of Forstmann* avoids boundary
conditions on E at the interface and leads to explicit
equations for the field inside the metal (plasma).
The calculation presented here improves upon
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this work in two ways: First, it avoids Forst-
mann’s linearization of the dispersion relations and
so permits direct comparison with (1.1)-(1. 4),
and second, it points out certain approximations
that have been tacitly assumed in the diffuse scat-
tering condition at the surface. The basic equa~
tions for the E field inside a bounded plasma, in
terms of the electron distribution are given in
Sec, II, along with a solution of Boltzmann equa-
tion for the electron distribution, The fields and
dispersion relations are compared with the un-
bounded plane-wave solutions and the results are
discussed in Sec. III.

II. THEORY

The geometry used in the calculation is shown
in Fig, 1. The metal is semi-infinite in the posi-
tive z direction, its surface being the x-y plane at
z=0, and the p-polarized incident wave lies in the
x-z plane, i.e., has only x and z components,

For nonmagnetic media, Maxwell’s equations
can be written

2 — - -
<V2—£g:—tz—) E=;4‘—2%J+417Vp , (2.1)
where c is the speed of light and J and p are the
current and charge densities. For z < 0, in the
vacuum region where there are no current or
charge densities, (2.1) is the familiar wave equa-
tion with harmonic transverse (V- E=0) plane-
wave solutions of the form

'ﬁ(;’ t)= E’Oei(io AT
where the wave vector 1.20 obeys the dispersion
relation

(c/w)ky-Ky=1 .

But for z >0, the complete equation (2. 1), with
the current and charge source terms, must be

solved.
If a wave of the form (2. 2) is incident on the

2.2)

(2.3)

vacuum - METAL
~ FIG. 1. Orientation of
7 z a p-polarized incident

‘ wave ¥ on a semi-infinite
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metal, Fig. 1, the excited fields and charge and
current densities inside the metal, will have the
form

F(F,t)=F(z)e'fxr -t | (2.4)

provided Eu is not too large so that nonlinear pro-
cesses can be neglected. In (2.4), k&, is the x
component of the incident wave vector, i.e.,

Ki+ki=k=w?/c? .

Thus, the gradient operator will have the form’

(2.5)

- /. 8

V=(ka, 5‘) ) (2.6)

f4
and Eq. (2.1) may be written®
92 - -

(8_3—2_ + ki>E(z)=S(z) , 2.7
where the source term is

$(2)= - 4miw/c?T (2)

+4n(ik,,0,8/82)p(z), z2>0
=0, z2<0 . (2.8)

The general solution to (2.7) is
E(z)=e™#[S) + Q2ik,)™ [ a£S(8)e ]+ e
x[S¢-@ir) [FatSE)e™ ,  (2.9)

where the integrating constants §0 and _§ ¢ are
determined by boundary conditions on E(z).

-
A. Boundary Condition on E

In order for the solutions to be independent of
any boundary conditions on the fields® at z2=0,
e.g.,* E,(z)=~E,(-2z), we will use a condition at
z~ <, Landau, in his classic paper on the vibra-
tions of an electronic plasma, !° considers the
penetration of E, (normal to the surface) into a
semi-infinite plasma and uses the condition that
far from the boundary D, is constant, i.e.,

lim E,(z)=E,(z<0)/€ , (2.10)

£~ ®
where € is the dielectric of the plasma. This
boundary condition is appropriate for the problem
Landau considered: A semi-infinite plasma
placed in an external E, e.g., produced by a
capacitor whose plates are at 2=+, But it is
inappropriate to the problem of a plane wave pen-
etrating a lossy plasma (described by a collision
frequency 7), since one expects the wave to be
damped out. Thus, the correct condition is

lim E(z)=0 |, (2.11)
FX

hence, S,= — (2ik,)"! fo‘” deS(E)e st | (2.12a)



[

Si= (i) [7 agS(e)ett (2.12b)

and the equation for the field inside the metal
plasma is

E(e)= (2ik,)™ [ dES(£) (e @2 - gt @)
(2.13)
B. Electron Distribution Function

The source function §(z) is determined by the
electron distribution function, which can be writ-
ten in the linearized form

f(F:.‘79t)=f0+f1(z, §)ei(kxx-wt) ° (2.14)

Here f, is the equilibrium distribution and f; is
the small (f; <f,) departure from equilibrium due
to the excited waves in the plasma. Thus,

§(z)=-41ref dvv? f dﬂ[ _z’::)_:
0

+ ( ik,, 0, :—z)] fi1z, V), (2.15)

and the problem reduces to solving the Boltzmann
equation for f,(z, V),

—i(w+iy —kw,)f1(2) +v, i— fi(z) =7%-ﬁ(z)-$fo
0
(), o

where 7 is the collision frequency, €%is the
Fermi energy, and N, is the local deviation from
N,, the average particle density. The second
term on the right-hand side of (2.16) is due to
relaxation of f to the local equilibrium®!

0
fLo=fn-§‘;TI; <Paf_2> Ny(=) . (2.17)

Rewriting (2.16) as

(8—1 —z'lc> fie, %) =eglz,%) <%€‘L) o (2.18)

where k=w/v, , (2.19)
w=w =k, +iv , (2.20)
- VE@R) 27y & Nk

and g(z,v)= v 3eN, v, ° (2.21)

we find the solution to be

filesD)=e™ [F)+ [ asete e ]
Xe <:_j}> . (2.22)

F({¥) is an arbitrary function of velocity which de-
pends on the boundary conditions.
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Consider now the electrons moving toward the
surface, i.e., electrons with v,<0. Since f, grows
exponentially (e~7%/%) with increasing z, the re-
quirement that f; be finite gives

F(v,<0)= —fow dége ™ | (2.23)
so that

fi1(v,<0)= -f deg(E, Ve ¢ -2¢ (%%) . (2.24)

The value of f; for v, >0, i.e., for electrons mov-
ing away from the surface, is determined by the
nature of the scattering at the surface. It will be
assumed that a fraction p of the electrons moving
toward the surface, where p is independent of the
electron motion, is scattered specularly with re-
versal of the velocity component v, and the rest
are scattered diffusely with complete loss of in-
formation about their incoming velocity.!? Thus,
for the fraction p specularly reflected,

[f(vs:z=0)=f(_vnz=0)]u,>0 s (2.25)
or, since f, is symmetric in ¥, we have
[f1(0e, 2=0)=f1(=v,,2=0)], 50 - (2.26)

In regard to the diffusely scattered electrons,
Reuter and Sondheimer, Z Forstmann, * and others
assumed that they were thermalized to the total
equilibrium distribution f,

[f(vg,z=0)=f0(- ‘U,,Z=0)]u‘>o ’ (2.27)

or [fl(vmz:o)]vz>0=0 ° (2.28)

But this condition cannot represent diffuse scat-
tering since it does not conserve particles but
requires the electrons to stick to the surface.®

This problem is related to a similar difficulty
in the Boltzmann equation with the relaxation-
time approximation: If the relaxation is assumed
to be toward f;,, the equation does not conserve
particles. The reason is that the scattered elec-
trons relax to the local equilibrium f;, which dif-
fers from f, by the presence of a density wave. 4
Because the density wave is longitudinal, the local
equilibrium correction affects only the longitudinal
dielectric function, '* changing it from

&=1—[wi/w(w+iy)] 3/a%) (1 -tan~'a/a) (2.29)

to (1.4).
A better condition for diffuse scattering, which
conserves particles, is

[J &0, 2=0)= [ fro (=0, 2=0)],,50 , (2.30)

which can be reduced to
J @ f1(v,>0,2=0)=1N,(z=0) . (2.31)
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Because the correction to €; due to f1,o is pro-
portional to v/w, which is quite small in the region
of interest (w >w,), it will be dropped to simplify
the calculation, Thus, (2.21) simplifies to

gz, V)=V"EGk)/v, .

To be consistent, the same correction in the dif-
fuse scattering condition will also be dropped.
The effect of these approximations should be that
the longitudinal dispersion relations are correct
only to first order in v/w and the equations for
the wave fields exact only for the specularly re-
flected case (p=1).

With these approximations the integration con-
stant for positive v, is

(2.32)

il

F(vz>0)=_pfowdg(ge-i“)v‘<o N (2.33)

and (2.22) becomes

fi= —e(%) h;(z,\7)+e[<z—];°—> hz(zi)] 030 5
(2.34)

where h1=fz dt g(E, V)e ™ =o (2.35)

and  hy=e™ [ “dE [gem ™ ~plge” )] . (2.36)

The prime on the p term indicates that wherever

v, appears it should be replaced by its negative.
Substituting (2.34) into the expression for S and

integrating over Fermi energies we have

- . 3N e2 W - N 9 -> . 3N 2 W o ] furd
S(z)=1 —7’;-3)?,-—] aQ [? VF—<kx,0, _z}E)]hx(z:VF) —1i —”70‘7%— frﬁlﬂ[?v—(kmo, —ig)]hz(z,vp) ’

where fn indicates that the solid~angle integration
is only over the hemisphere for which v, >0.
Noting that

Z—’ZL =ikhy~g , (2.38a)

2]
B2 _ikn, | (2.38Db)

9z

the source function can finally be written

's'(z)=in an [%ﬁ- - (&, o,x)] hy(2)
-inn a8 [“’TZ —(k,,,o,x)] hy(z)
(2.39)

where the velocities are understood to be Fermi

(2.37)

velocities (the F subscript will be omitted in sub-
sequent equations) and

K =3wZ/4m% . (2.40)

III. SOLUTIONS AND DISCUSSION

Substituting the source term (2.41) into (2. 13)

and using the identities (see the Appendix)

0
z wtk,v,

x[hl(a-f deg@)e**ka‘*-"} (3.1a)

f d hye* e 0 - —LE— () (3.1b)
2

wtk,v,

the expression for the electric field inside the
metal plasma (z >0) becomes

B 3 4K (Idﬂ[(w?/cz)_(kx,o, %] lwdgx‘r-ﬁ(g)e-*"“-ﬂ _fdﬂ[(wV/;‘?;?Efx, 0,x)]

n=sk, 2N w-nv,

o >/ 2 * - -
X£ dg";.ﬁ(g)e-ﬂ((f-l) +f dﬂ[(WV/q)—(kx;O,K)] eing'/; dg[“’,vE-lkf_p(;oEe-lkt)']> (302)

w—nv,

n

One could formally solve (3. 2) by means of
Laplace transforms, but it is more instructive for

our purposes to assume a plane-wave solution of
the form used in the preceding paper*
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E@) = (ck, /w) Le 27 (5x ckp /) Te¥r°F (3. 3)

and determine its deviation from the exact solu-
tion. By inspection of (3.2), let

E()=k [A,e™ + [dQB(, ¥)e ™
+(3xEr)[Ae"+ [daBr, D™, (3.4)
where k= (,,0,2), (3.5)
ET= (kx, 0, 7) ) (3.6)

are the longitudinal and transverse wave vectors'®
and the integral terms represent the solutions’s
deviation from plane waves. Substituting (3. 4) in-
to (3.2) and simplifying we find

k- {D0VAse P+ [ag e BO, DB() + F(r, )]e ™4
+(Gxkg) - {D(r)A,ei™ + [aQ[B(r, 7D (k)

3.7
+F(r,¥)]e*}=0 ¢
where
~ K dQ[(w¥/c?) - (7, 0,1)]¥
D(n)_l—kﬁ—n? w+iy = (kyv,+10,) (3.8)
and
K[ (wV/ 2) (ky, 0, K)] v
F(TI, ) LZZ £ { Lw n/U‘
dQv -
_p<w nv)} f B(n, %
-p(B(n,v'm']} . (3.9)

Note the primes on the p terms, which indicate that
v, is replaced by — v, should not be confused with
the primed variables of integration.

Thus the z dependence of ¥ in the metal plasma
is of the form (3. 4) provided

detD=0
and det[BD(x)+F]=

(3.10)
(3.11)

Condition (3. 10) gives the dispersion relations for
the longitudinal (¢;) and transverse (k) waves,
while condition (3. 11) determines the function B

for both waves. Note that since the fraction p does
not appear in (3.8), the dispersion relations are
independent of the nature of electvon scatteving at
the surface, and thus not subject to the approximate
treatment of diffuse scatteving.

A. Deviation from Plane Waves

Because we are primarily interested in how
good the plane-wave approximation is and not in
the exact behavior of E (the equations are incor-
rect for diffuse scattering anyway) it will not be
necessary to solve the complicated equation!” for

B(¥). The z dependence in the non-plane-wave
terms of (3.4) appears only in the exponential
factor

*2 = explil(w - kyv,)/v, ]2} exp[- (v/v,)z], (3.12)

so these terms can be neglected for distances
from the surface greater than

d=v,/y. (3.13)

Since the significant contributions in the integral
expression for the non-plane-wave terms arise
when v,~ v, these terms can be neglected for
distances of the order of the electron mean free
path

(3.14)

Thus, for example, in potassium (vp=8.52%10"
cm/sec , w,=6.52x10" sec™)! with a collision
frequency corresponding to w,7=50(y=7"1), this
distance would be about 66 A.

Xm=vF/‘)/.

B. Dispersion Relations

The dispersion relation (3.10) can be simplified
by separating it into longitudinal and transverse
parts,

DLO\) = 0’ (3. 158.)

Dy(7)=0, (3. 15b)

where k- D ). k=2 D,(\) (3.16a)
(xkg) D('r) (§xKp) = k7D (T) . (3.16b)

These “longitudinal” and “transverse” components
of D,

3 2
D =1- 0), H] 3
z (b vp)P(w?/c® - kf)
fdﬂ(kL vpw/c? = KRy - % (3.17a)
W+iy =Ky« Vp '
- 3w} w
Dr=1 an(kvp)i(w?/c? - k%) ¢
f d9 [y XTp) - (kpXTp) (3.17b)
W+iY —Kpe Vg ’
can be integrated, ® e.g.,
> > -1
f—‘i_g—k—'il’&— -- 41r(1— 31“——“) (3.18)
W+IYy —=K.Vp a

to give
Dy =1 -[wi/w(w +47))(3/a2)[1~ (tan"*a,/a;)]

[{1 +iv/w[l = (cky/w)?]} !
1+iv/w

] R (3.19a)
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2 2
q_ W 3 (l+ar -1
Dr=1 w(w+1iy) 2a"’T< ar tan “ar 1>

X [1=(ckp/w)?]?

Substituting the standard expression for €, [Eq.
(1.3)], Dy becomes

Dr= [ET(ET, w)— (CkT/w)z]/[l - (Ckr/w)z] s

and we recover the dispersion relation for trans-
verse waves in an unbounded plasma [Eq. (1.1)].
D,;, however, differs from the corresponding un-
bounded plasma expression €} [Eq. (2.29)], by
the factor

{1 +iv/w[l - (cky/w ]/ A +iv/w) .

Since (ck,/w)?> 1, (3. 21) is approximately
[1+iv/w]™? and, thus, the presence of a boundary
alters the dispersion relation for longitudinal
waves'? by the small factor i¥/w. We noted ear-
lier that the neglect of the local equilibrium cor-
rection term alters €; by the factor

[1+i(v/w)(1 -tan™a/a)] ™.

Since this factor is much smaller than (3. 21), it
does not seem likely that inclusion of this correc-
tion in the present calculation will significantly
improve the agreement between the bounded and
unbounded longitudinal dispersion relations.

In summary, we have shown that the presence
of a sharp plane boundary alters the wave fields
from their exponential form only in a thin region
inside the metal plasma. The thickness of this
region is about one-sixth of the electron mean
free path, and outside of it the waves can be de-
scribed as plane waves of exponential form. Thus,
the Fresnel equations obtained in the preceding
paper! are applicable provided the damping lengths
of the waves Im(2)~! and the film thicknesses are

(3.19b)

(3.20)

(3.21)

(3.22)

|

of the order of a mean free path or longer. In
regard to the dispersion relations, we found that
they are completely independent of the nature of
scattering at the surface. While the transverse
waves were found unaffected by the presence of a
boundary, the dispersion relation for longitudinal
waves (plasma waves), was found to be slightly
changed, the effect being proportional to the col-
lision frequency Y. Thus, at least when the col-
lision frequency is small, i.e., w,7>1, the dis-
persion relations for unbounded waves may be
used in the Fresnel equations.

APPENDIX
We wish to evaluate here the integrals

L= [T dE hy(E,¥) et he2) | (Ala)
4

L= [ dE (g, 7) e*ireee) (Alb)

Let us consider I;: Substituting the expression
for ny [Eq. (2.37)], we have

I, = cFike f:dﬁ eu(uk,)f:dglg(g: i’ | (A2)

Integrating by parts and using the fact that e***
vanishes as £ - «, we find

e#ik,z i« ) © , ©
Il - _i(Kik )(ei Kikg zf dglge—ikf _/ dggeﬂk,l) ,
£ z z

(A3)

which can be rewritten in the desired form

L= [iv,/ (we ko)]hy(z, 9) - [ 7 dé gl&, V)ete 2],
(8.1a’)

Similarly, I, may be evaluated to give

L=[iv,/(w+kw,) |l (2, v) . (3.1b")
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B__ 2Kv} 3w} <v,>2

A T wrint " amw+in)\ o

for specular scattering, i.e., p=1.
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Resistivity of Some CuAuFe Alloys!
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The electrical resistivity of a series of CuAuFe alloys, containing 0, 5, 10, and 100at. % Au,
has been measured over the temperature range 0.5—300 °K, and the results are compared with
recent theoretical predictions of the resistance anomaly associated with the formation of the
spin-compensated state. From such a comparison, the Kondo temperature Ty is found to de-
crease rapidly with increasing Au concentration from 24 °K in CuFe to 0.24 °K in AuFe. Al-
though a dependence of the form

A-B(T/Tg)*In(T/ Ty)?

is found to fit the results of the CuAuFe alloys over a wide range of temperatures, this does
not describe the CuFe results in the low-temperature limit, where a parabolic dependence
C—-D(T/Ty)? is observed for T/Tx<0.06. An expression of the form

S(S+1)7? ) -
[In(T/Tg)]?
describes the Au results and those of the CuAuFe alloys at T> Ty with the spin $=0.77 +0.25

if suitable corrections are made for deviations from Matthiessen’s rule in the temperature
region where phonon scattering is significant.

E-~F <1+

I. INTRODUCTION

Following the demonstration by Kondo! of a
logarithmic divergence in the exchange scattering
of conduction electrons by magnetic impurities in
metals, it was soon realized that strong spin cor-
relations must exist between the conduction elec-
trons in the region of the magnetic impurity at
temperatures below the Kondo temperature T.
For an antiferromagnetic exchange coupling J be-
tween the conduction electrons and the localized
moment, the Kondo temperature of the system is
given by Ty~ Ep eV I"EF) where n(Ey) is the den-
sity of states at the Fermi energy Er. Several
authors®® have suggested that as 7~ 0, the con-
duction electrons are polarized around the im-
purity in such a way as to completely compensate
its magnetic moment. Physically, it may be ex-
pected that these correlations will be destroyed by

temperatures or magnetic fields comparable with
the correlation energy k2T, . Experimental esti-
mates of Ty range from below 107 °K in AzxMn *
to 300 °K in A«V, ® this variation being consistent
with less than an order-of-magnitude change in J.
Theoretical attention has been focused both on
the nature of the spin correlations below T, and
on the physical properties of the state as a func-
tion of temperature and magnetic field.® Expres-
sions have been derived for the temperature de-
pendence of the resistivity above T, 7 below
Ty, %9 and throughout the entire temperature
range. 1! The qualitative features of these ex-
pressions are similar, predicting that the resis-
tivity due to s-d exchange scattering decreases
from the unitarity limit at 7 =0 to a high-tem-
perature plateau proportional to J2S (S + 1) at
temperatures far above Ty. (S is the impurity
spin.) No discontinuity occurs at Ty, the



